Extensions 1→N→G→Q→1 with N=SL2(𝔽3) and Q=C22

Direct product G=N×Q with N=SL2(𝔽3) and Q=C22
dρLabelID
C22×SL2(𝔽3)32C2^2xSL(2,3)96,198

Semidirect products G=N:Q with N=SL2(𝔽3) and Q=C22
extensionφ:Q→Out NdρLabelID
SL2(𝔽3)⋊1C22 = C2×GL2(𝔽3)φ: C22/C2C2 ⊆ Out SL2(𝔽3)16SL(2,3):1C2^296,189
SL2(𝔽3)⋊2C22 = C4.3S4φ: C22/C2C2 ⊆ Out SL2(𝔽3)164+SL(2,3):2C2^296,193
SL2(𝔽3)⋊3C22 = C2×C4.A4φ: trivial image32SL(2,3):3C2^296,200
SL2(𝔽3)⋊4C22 = Q8.A4φ: trivial image244+SL(2,3):4C2^296,201

Non-split extensions G=N.Q with N=SL2(𝔽3) and Q=C22
extensionφ:Q→Out NdρLabelID
SL2(𝔽3).1C22 = C2×CSU2(𝔽3)φ: C22/C2C2 ⊆ Out SL2(𝔽3)32SL(2,3).1C2^296,188
SL2(𝔽3).2C22 = Q8.D6φ: C22/C2C2 ⊆ Out SL2(𝔽3)164-SL(2,3).2C2^296,190
SL2(𝔽3).3C22 = C4.S4φ: C22/C2C2 ⊆ Out SL2(𝔽3)324-SL(2,3).3C2^296,191
SL2(𝔽3).4C22 = C4.6S4φ: C22/C2C2 ⊆ Out SL2(𝔽3)162SL(2,3).4C2^296,192
SL2(𝔽3).5C22 = D4.A4φ: trivial image164-SL(2,3).5C2^296,202

׿
×
𝔽